
1

Dear friends of Survey Solutions,

Below is an overview of the new features added in version 4.2.0.

Observer accounts

The new version adds a great feature for collaboration. An observer account can be added by the
administrator user to let a certain person monitor the activity (shadow) another user in the
system without being able to damage the system by unintentionally deleting or modifying an
assignment. This feature improves the reliability of the system as it tighten the security: only
those users that need to modify the data can be given the permission to do so, while other users,
such as managerial personnel can be given a read only access for monitoring the progress.

2

To add a new administrative account the administrator should follow this procedure:

1) point to the Users item in the menu, select Observers;
2) a list of current observer accounts will be displayed (can be empty);
3) click Add observer button.
4) fill out the standard user account form specifying the login, password and contact for the

user:

Click Save changes and the new account will be added to the list of the observer accounts.

When the observer logs into the system he will be able to select another user’s account from the

list and by clicking the button view exactly what that user can view. Some operations are
disallowed for the observer user, such as adding or modifying assignments and other operations
that affect the data.

Language extension: functions

Survey Solutions 4.2.0 adds a number of functions that help users write proper enablement and
validation conditions. For example instead of

(education==4) || (education==5) || (education==9)

it is now possible to write

education.InList(4,5,9)

Here InList() is a function, which provides an alternative (shorter and more readable) notation
for the above condition. Other functions provide functionality, which was not available or difficult

3

to write as a single expression. For example, the GpsDistanceKm() computes an approximate
distance between the two locations on the Earth.

home.GpsDistanceKm(work)

The functions have a name and arguments. In the above example, GpsDistanceKm is the name
of the function, and home and work are two of its arguments: the two locations the distance
between which should be computed. This is more obvious in the alternative notation:

GpsDistance(home, work)

Note that some functions are written with a mandatory dot inside a function name, for example:
ZScore.Bmifa(), which uses WHO child growth reference tables to compute the BMI-for-age z-
score.

The users should pay attention to the types. Survey Solutions is using C# language for writing
conditions, and in C# each function and each argument has a certain type, which indicates the
kind of values the variable or function may take. All functions and their arguments are described
in the function reference guide “Survey Solutions Functions”. More functions to address
common situations will be added in the future versions.

A common mistake that beginner users make is simply to call the function in say a validation

condition. The condition requires a Boolean expression, kind of the x>2 that you wrote in the
previous versions. Some of the functions are already providing the result as Boolean, for example

name.IsLike(“Ch?n”) will be true for values “Chen” and “Chan”, but some functions
delegate the decision to the designer, who should decide how the result of the function affects
the decision to switch a question on and off or consider a value valid or invalid. For example, a
commute question may be enabled for respondents reporting their work is more than 10 km
away from their home with a condition as: home.GpsDistanceKm(work)>=10.0

Language extension: addressing roster items

Another new feature added in Survey Solutions 4.2.0 is addressing the items in rosters by codes.
From version 4.2.0 every roster item must have a code attached to it. Older questionnaires will
continue to work and item codes will be generated in them by the system.

The situation when examining an item code comes frequently in the consumption and price
surveys. Imagine for example the following case:

GROCERIES price volume

[0] 101 Milk 35.00 12

[1] 105 Toast 29.00 X

[2] 211 Honey 83.00 2

4

Here the groceries fixed roster inquires about the price and the volume of purchased items: milk,
toast, and honey. However, the designer of the questionnaire wants to disable the volume
question for the toast. This can be done by examining the item code in the enablement condition
for the volume question:

@rowcode!=105

The condition refers to the system value @rowcode, which contains the code of the item in the
row for which the volume is being evaluated. The @ character is intended. The effect of this
expression is that it will evaluate to true for all items with codes different from 105 (and hence
the volume question will be enabled) and it will evaluate to false for the item with code 105 (and
hence the volume question will be disabled).

Naturally, the condition examining the item codes may be a part of a larger expression:

@rowcode.IsNoneOf(105,131,159,167) && (hhsize>3) && (price>2.2)

In this expression the question will be enabled when the item code is not one of the listed codes
(105, 131, 159, 167) and the price of the item is above 2.2 (unspecified currency units) and the
household size (hhsize) is more than 3.

Adding the item codes in the Designer is easy (item codes shown in green in the table below):

